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Energy cascade in a homogeneous swarm of
bubbles rising in a vertical channel

By C. C. K. Lai†, B. Fraga‡, W. R. H. Chan AND M. S. Dodd

We perform direct numerical simulations (DNS) of millimeter-size air bubbles rising
in a vertical water channel. Our objective is to study the energy cascade in this simple
configuration, which is a prototype of other more complex flows involving bubbles and
droplets. Both rigid and deformable bubbles are considered using the immersed boundary
method (IBM) and the volume of fluid (VoF) method. The energy cascade is quantified
using the nonlinear interscale energy transfer term appearing in the Kármán-Howarth-
Monin (K-H-M) equation. We observe that the energy cascade is highly anisotropic in
scale space with vertical turbulent eddies exhibiting strong inverse cascades. When scale-
normalized, the interscale energy transfer term shows a plateau for turbulent eddies whose
size is approximately 1 to 2 bubble diameters. However, the magnitude of that term is
only 50–60% of the required viscous dissipation, indicating that the classic forward-
cascade picture by Richardson and Kolmogorov is not satisfied despite the existence of
a scale-invariant range.

1. Introduction

Examples of turbulent two-phase flows involving millimeter-sized droplets and particles
are abundant in the natural and human-made environment. Intensive experimental and
numerical studies done in the past two decades have improved our understanding of
(1) the modulation of continuous-phase turbulence (Balachandar & Eaton 2010), (2) the
transition between different flow regimes (Capecelatro et al. 2018), (3) the enhancement of
turbulent mixing brought by the dispersed phase, and (4) the collective effects of particle
wakes (Riboux et al. 2013). Despite these efforts, a fundamental aspect of fluid turbulence
– the energy cascade – has received less attention. The cascade refers to the transfer of
kinetic energy among turbulent eddies of different sizes. In the classic, forward-cascading,
Richardson-Kolmogorov (R-K) phenomenology, kinetic energy is passed down from the
energy-containing (large) eddies to the viscous dissipative (small) eddies through the
inertial subrange. Eddies within the inertial subrange only passively transfer the received
energy to smaller ones. This postulate is asserted to be true for arbitrary turbulent flows
at sufficiently high Reynolds number (Pope 2000) and leads to the famous −5/3 spectral
slope scaling in the spatial-temporal spectra of velocity fluctuations (Obukhov 1941).
The existence of an inertial subrange has been shown in previous research for various
flows by plotting the scale-normalized interscale energy transfer rate as a function of
the eddy size (i.e. scale); a plateau appears for the subrange. However, the appearance
of a −5/3 scaling in the spectra does not imply an inertial subrange. Recent studies of
the production region of turbulent kinetic energy (TKE) behind fractal grids (Gomes-
Fernandes et al. 2015) demonstrate that such scaling is also present in this highly non-
homogeneous, non-isotropic region where the second similarity hypothesis by Kolmogorov

† Physics Division, Los Alamos National Laboratory
‡ School of Civil Engineering, University of Birmingham, UK

55



Lai et al.

does not hold (Pope 2000). Eddies with a particular set of orientations can exhibit an
inverse energy cascade, and therefore they deviate from the R-K picture.

The picture of energy cascade in general two-phase flows is not clear. This is because
the dispersed phase is another source of TKE in addition to the production by fluid mean
shear (Pope 2000). The scales over which this extra production source occurs are limited
by the characteristic size of the dispersed phase, e.g., diameters of bubbles. Depending
on the ratio between these scales and those of the fluid turbulence, different interactions
can occur in the cascade of energy. For millimeter-sized air bubbles rising in water, the
−3 (or −8/3) spectral slope has been shown to be a robust feature of the fluid-phase
velocity spectra since the original study on homogeneous bubble swarms in a vertical
channel by Lance & Bataille (1991). These authors reasoned such scaling by stating
the balance between the production by bubbles and dissipation in the spectral energy
equation; the spectral energy transfer term was neglected. Physically, this means that
energy does not go through a cascade and is dissipated immediately by viscosity. This is
a dramatic departure from the R-K phenomenology, which has not been demonstrated in
the scale space. Recently, the −3 spectral slope was also shown to exist in bubbly flows
with background fluid turbulence by Prakash et al. (2016) and Almeras et al. (2017).

Our objectives are to answer the following three questions: Does an inertial subrange
exist in bubbly flows? Is the Lance & Bataille (1991) reasoning for the appearance of
−3 spectral slope right? What is the map of interscale energy transfer in bubbly flows?
To answer these questions, we apply the von Kármán-Howarth-Monin (K-H-M) equation
(Hill 2002) to a set of direct numerical simulations (DNS) of homogeneous bubble swarms
rising in a vertical channel. The K-H-M equation tracks the spatial-temporal evolution
of the two-point, second-order velocity structure function in which the structure function
has the interpretation of kinetic energy possessed by a turbulent eddy of a given scale
(size) (Davidson 2015). Hence, we can study the interscale energy transfer in bubbly
flows. We consider an initially quiescent fluid because we want to isolate the effects of
bubbles on the energy cascade independently from any background fluid turbulence.

2. Mathematical description

2.1. Governing equations

The dynamics of the liquid matrix or continuous phase are predicted through DNS of
the Navier-Stokes equations for an unsteady, incompressible and viscous flow, expressed
as follows

∇ · u = 0, (2.1a)

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u + f , (2.1b)

where u = u(x, t) is the fluid velocity, ρ is the density, p = p(x, t) is the scalar pres-
sure field, ν is the water’s kinematic viscosity, and f = f(x, t) is the body force term
exerted at the bubble-liquid interface. We adopt two fundamentally different approaches
to simulating the dispersed phase, which result in different ways of calculating f .

2.2. Eulerian-Lagrangian model

The Eulerian-Lagrangian code discretizes both the diffusive and convective terms by
second-order central difference schemes, whereas a three-step Runge-Kutta algorithm is
adopted for the time derivatives. The solver is based on a predictor-corrector method
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in which a multigrid algorithm solves the Poisson equation for the pressure field. This
code had previously been validated successfully for bubbly flows simulations using point-
particle Eulerian-Lagrangian methods (Fraga et al. 2016) and for fluid-structure interac-
tion problems using the immersed boundary method (IBM) (Chua et al. 2019).

The discrete phase is composed of spherical non-deformable gas bubbles defined by the
position and velocity vectors of their centroids. The Eulerian-Lagrangian model does not
account for the effect of collisions between bubbles, assuming a low a void fraction and a
significant presence of surfactant (“dirty” bubble) that prevents coalescence. The effect
of shape deformation and bubble-bubble interaction is only considered in volume-of-fluid
(VoF) simulations (Section 2.3). The motion of the bubble centroid is governed by

mb
dub

dt
= ρl

∫

S

TdS + (ρb − ρl)Vbg, (2.2)

where mb is the bubble mass, ub = ub(t) is the Lagrangian velocity at the bubble cen-
troid, ρl and ρb are the water and air densities, respectively, Vb is the bubble’s volume, g
is the gravity acceleration, and

∫
S
TdS =

∫
S

[
−(∇p)/ρl + ν∇2u

]
dS is the integral of the

hydrodynamic stress tensor T around the bubble’s surface, which is approximated using
an implementation of the IBM (Peskin 2002; Uhlmann 2005; Schwarz et al. 2015). The
spherical interface of each bubble is composed of a collection of NL Lagrangian markers,
which force a no-slip boundary condition on the bubble surface. At every time step, the
position and velocity Lagrangian vectors are distributed among the message-passing in-
terface blocks using an algorithm based on work by Ouro et al. (2019). The preliminary
Eulerian velocity vector field ũ, unaffected by the bubble presence, is interpolated using
third-order delta functions (Yang et al. 2009) at each Lagrangian location as

UL =

nE∑

i=1

ũi · δ(xi −XL)∆VE , (2.3)

where UL is the interpolated Eulerian velocity at the Lagrangian location XL, xi is
the Eulerian position vector, nE the number of Eulerian neighbouring nodes, ∆VE is
the cell volume, and δ is the interpolation delta function. Once the Eulerian velocities
are mapped into the Lagrangian framework, a force vector FL = (ut−1b − UL)/∆t is
calculated explicitly for every Lagrangian marker. By integrating all the forces across
the bubble interface, we approximate the value of

∫
S
TdS, which is gathered for every

bubble by the master processor. The bubble centroid velocity is obtained by implicitly
solving Eq. (2.2). Once the bubble centroids’ positions are updated, the bubble-to-liquid
coupling is achieved by calculating the forcing term f at every Eulerian node within range
(defined by the delta function’s stencil) of the bubble as

fi =

nL∑

L=1

UL − utb
∆t

δ(XL − xi)∆VL, (2.4)

where fi is the contribution to the momentum balance of the Eulerian node i by nL
Lagrangian neighbors, ∆t is the time step, and ∆VL is the volume of influence of each
Lagrangian marker. This forcing term is used to correct the preliminary velocities be-
fore applying the multigrid solver, which will ensure mass conservation and provide the
definitive Eulerian velocity field.
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2.3. Volume of fluid model

In the VoF method, the sharp interface between two immiscible fluids is determined
using the VoF color function, C, which represents the volume fraction of the gas in each
computational cell. We solve the governing equations, Eqs. (2.1a)-(2.1b), throughout
the whole computational domain, including the interior of the bubbles. The governing
equations are discretized in space in an Eulerian framework using the second-order central
difference scheme on a uniform staggered mesh.

A body force has been added in the direction of gravity to ensure that the net mo-
mentum flux in the vertical direction is zero (i.e., to prevent uniform acceleration of both
fluids). This modification has been used by other groups to simulate droplets and bubbles
in periodic, vertical channels (Gueyffier et al. 1999; Bunner & Tryggvason 2002). In the
VoF approach, the source term in Eq. (2.1b) is fσ = fσ(x, t), the surface tension force,
which is computed by using Brackbill et al.’s (1992) continuum surface force approach
as

fσ =
ρ

ρ̄
κ∇C, (2.5)

where ρ̄ ≡ (ρ1 + ρ2)/2. The interface curvature κn+1 is computed using the height-
function method (Cummins et al. 2005) with improvements developed by López et al.
(2009). The equations are integrated in time using the second-order Adams-Bashforth
scheme, and the pressure is computed by solving the Poisson equation (Dodd & Ferrante
2014) for which a combination of a two-dimensional fast Fourier transforms (FFT) in the
x–y plane and Gauss elimination in the z-direction (Schmidt et al. 1984) is used. This
FFT-based method is 10–40 times faster than the standard multigrid-based pressure-
correction method (Dodd & Ferrante 2014).

In our VoF method, the interface between the two fluids is reconstructed using a
piecewise linear interface calculation (Youngs 1982). The volume fraction C is advanced
in time using the Eulerian implicit–Eulerian algebraic–Lagrangian explicit (EI-EA-LE)
algorithm originally proposed by Scardovelli et al. (2002) and later improved by Baraldi
et al. (2014) to ensure local and global mass conservation. Using the improved EI-EA-
LE algorithm, the cell-centered volume fraction C is advected using the face-centered
velocity field u. The method displays second-order spatial accuracy for values of Courant-
Friedrichs-Lewy number ≤ 0.1. Furthermore, the average geometrical error (Eg = |C(x)−
Cexact(x)|) is less than 1 % for a moving droplet with 30 grid cells or more across the
diameter. The complete description of the method and the results are reported by Baraldi
et al. (2014). Breakup and coalescence of fluid volumes are handled implicitly by the VoF
method. For example, if two interfaces occupy the same computational cell during the
VoF update from time level n to n + 1, then the two VoF volumes are merged (or
coalesced) automatically. Likewise, when the thickness of a bubble ligament falls below
the grid spacing, h, it will break.

3. Results

We simulated bubbly flows in a periodic vertical channel filled with initially quiescent
water. The bubble initial diameter is D0 = 2 mm, providing Rep ≈ 400, and the channel
dimensions are 40D0 × 20D × 20D0. The gravity acceleration is g = −9.81 ms−2. A
void fraction of 0.5% was simulated for VoF, and 0.5% and 0.25% for IBM. Unless
stated differently, all the results shown correspond to a void fraction α = 0.5%. The
grid resolution for VoF is approximately 13 grid points per D0, whereas it is 8 Eulerian
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Figure 1. (a) Instantaneous Eulerian (liquid phase) velocity field and (b) vortex tubes at the
bubbles’ wakes at the same time instant predicted by the IBM 0.5% void fraction DNS. The
velocity is scaled with the bubble terminal velocity Ut and the vortex tubes are visualised using
Q criterion.
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Figure 2. PDFs of the standardized velocity fluctuations ui/ui,rms: (a) vertical velocity w and
(b) horizontal velocities (u, v). The experimental data are from homogeneous bubble swarms
reported by Risso (2018).

cells for IBM, yielding 210 Lagrangian markers per bubble. Figure 1 shows a snapshot
of the domain with the instantaneous Eulerian velocity field (left) and the Q criterion
isosurfaces describing the vortex tubes generated at the boundary layers and wakes of
the air bubbles (right) for the IBM DNS with a 0.5% void fraction.

Figure 2 shows the probability density functions (PDFs) of the standardized velocity
fluctuations ui/ui,rms calculated from both simulation approaches. This standardization
facilitates the comparison among flows with different void fractions and, hence, different
magnitudes of kinetic energy of the induced liquid fluctuations. The figure is also plotted
with a semi-log ordinate axis to show the stretched exponential tails of the PDFs (Risso
2018); PDFs having the form p(x) ∼ exp(−|x|) appear as straight lines in such a plot.
Figure 2 shows key features of the velocity PDFs found from experiments are reproduced
by both simulation approaches: (1) only the w-PDF is left-skewed with a long postive tail,
whereas the PDFs of u and v are symmetric about zero, (2) the mode of w is negative,
and (3) all PDFs have stretched exponential tails. The long positive tails of w have
been shown to be caused by the near wake (within two bubble diameters) behind the
rising bubbles (Almeras et al. 2017; Risso 2018), and their appearance means that large
upward velocities occur more frequently than downward ones with the same magnitude.
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Figure 3. Vertical (one-dimensional) spectra of the vertical velocity fluctuations Eww(λ1): (a)
IBM and (b) VoF method. The solid lines are results from present DNS simulations, while the
dashed lines are experimental data extracted from Risso (2018).

Apart from the similarities, it is interesting to see that the PDFs computed from the
VoF dataset deviate from those of IBM for large velocity fluctuations, and they are also
in better agreement with the experimental data. A plausible explanation is that the
bubbles are deformable and can undergo coalescence/breakup in the VoF simulations.
These processes create large strains across the fluid-bubble interface, and therefore higher
magnitudes of velocity fluctuations can be expected in the PDFs. The same is ruled out
in the IBM approach, where bubbles are modeled as moving solid boundaries within the
fluid. We note that the bubbles in the experiments could deform but did not coalescence or
break up. This indicates that deformability is mostly responsible for the good agreement
between the results of VoF and experiments.

Figure 3 shows the one-dimensional velocity spectra Eww(λ1) in both uncompensated
and compensated (insets) formats. The experimental data (dashed lines) derived from
swarms of 2.5-mm-diameter bubbles and with a void fraction between 0.5 and 7% are
included for comparison. Both simulation approaches produce velocity spectra very sim-
ilar to the ones measured for λ1 < 500 m−1; this inverse length scale corresponds to the
D0 = 2 mm used in the simulations. The characteristic −3 spectral slope observed in
bubbly flows (Almeras et al. 2017; Risso 2018) is found in the range 100 m−1 < λ1 <
500 m−1. Beyond 500 m−1, the spectra from the simulations decay faster than reported
from experiments. This is most likely due to inherent noise with the measurement tech-
nique and to the coarser spatial resolution in the experiments. From this comparison,
we conclude that the deformability of bubbles is not crucial to produce the −3 spectral
slope as the scales associated with the deformation of bubbles are smaller than the bub-
ble diameter. Also, we conjecture that the special −3 scaling is related to wake-to-wake
interactions that involve scales larger than the bubble diameter.

Figure 4 shows the joint PDF of the second Q and third R invariants of the velocity
gradient tensor (Meneveau 2011). Interestingly, the IBM results closely resemble those
reported for many single-phase turbulent flows; i.e., a Vieillefosse tail and a rich (with
high probabilities) enstrophy amplification quadrant (Q > 0 and R < 0), whereas the
VoF results exhibit a depletion (low probabilities) in both of the enstrophy amplification
and destruction quadrants (Q > 0 and R > 0). The vortex-stretching mechanism (the
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Figure 4. Joint PDF of the second Q and third R invariants of the velocity gradient tensor
∂ui/∂xj : (a) IBM and (b) VoF method. The black solid line represents 0 = Q3 + 27R2/4, and it
demarcates swirling regions (above) from straining regions (below). Starting from the outermost
contour, the contour values increase from −8 inwards at a fixed interval of −1.
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Figure 5. Ensemble averaged map of the nonlinear interscale energy flux term
Π(rx, ry, rz) = ∂δukδq2/∂rk: (a) IBM and (b) VoF method

enstrophy production ωiSijωj term appearing in the σ2-equation) is the sole inviscid
mechanism often interpreted to be responsible for energy cascade (Tsinober 2009). The
depletion of it in the simulation of deformable bubbles suggests that the transfer of fluid
kinetic energy from one scale to another is accomplished by a different means than the
known vortex-stretching mechanism.

Figure 5 shows the ensemble-averaged nonlinear interscale energy flux term Π in the K-
H-M equation. This term quantifies the magnitude and the direction of interscale energy
transfer at a scale |r| and hence, the energy cascade. We have chosen to compute this
term for |r| in the range 0–4 mm, which corresponds to inverse length scales λ1 ≥ 250
m−1 in Figure 3. This λ1 range includes the −3 spectral slope and the subsequent viscous
dissipation range that is relevant to the study of energy cascade in our bubbly flows. For
spatially homogeneous flows, Π = Π(rx, ry, rz) is only a function of the separation vector
r = x′−x = rxi+ryj+rzk between any two spatial points. The results shown in the figure
were computed using 0.4% of the available data points in the computational domain. This
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Figure 6. Spherically averaged nonlinear interscale energy flux term −Πa/4εa as a function of

eddy size r =
√
r2x + r2y + r2z : (a) IBM and (b) VoF method.

level of data utilization seemed to produce a converged spherically averaged interscale
energy flux (see Figure 6); more rigorous convergence tests will be done in the future.
Figure 5 shows that both simulation methodologies produce strong inverse cascade for
eddies predominantly aligned to the vertical (arrows pointing away from the origin with
values of rx and ry close to zero). The horizontally aligned eddies (with small values of
rz) exhibit a forward cascade (arrows pointing toward the origin). There are structural
differences in Π between the two simulations, but both share the same features.

To provide an integrated view of the energy cascade, Figure 6 shows the spherically
averaged Π term: −Πa/4εa. The averaging removes the dependence of Π on the different
orientations of r and allows us to examine Π solely as a function of the size |r| of a
turbulent eddy. This is important in practice because many turbulence models could
only account for a net interscale energy flux but not the directionally dependent transfer.
First, the VoF results seem to converge faster than the IBMs as the number of data points
utilized, N , increases. Second, both methods show that −Πa/4εa initially increases from
small values near |r| = 0 to a local maximum at |r| = 0.5 mm, and then decreases
before increasing again to reach a plateau for scales in the range |r| = 2 − 3.5 mm. In
this plateauing range, the scale-normalized energy flux is between 0.5 and 0.6, which is
less than the value of one demanded by the classic R-K forward-cascade phenomenology.
The sudden decrease after |r| = 0.5 mm could correspond to a range of scales where the
vertically aligned eddies (inverse cascade) are more dominant, which is the case of the
near-wake region. The differences between IBM and VoF on the length of this valley might
be due to the differences in shape and size of the bubbles produced in both simulations.

4. Conclusions

We have successfully developed two DNS codes to study homogeneous bubbly flows
in a vertical channel using the IBM and the VoF method. We found that both methods
reproduce the characteristic −3 spectral slope in the one-dimensional velocity spectra
and that deformability of bubbles plays a negligible role in this scaling. Deformability
does, however, produce higher velocity fluctuations as observed in physical experiments,
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while IBM with its rigid bubble assumption fails to predict them. The energy cascade in
bubbly flows is quantified using the nonlinear interscale energy transfer term Π appearing
in the K-H-M equation. We observed that the energy cascade is highly anisotropic in
scale space with vertical turbulent eddies exhibiting strong inverse cascades. When scale-
normalized, the interscale energy transfer term shows a plateau for turbulent eddies that
are 1–2 bubble diameters large. However, the magnitude is only 50–60% of the required
viscous dissipation, indicating that the classic forward-cascade picture by Richardson
and Kolmogorov is not satisfied despite the existence of a scale-invariant range. Finally,
from an analysis of the QR-plots, we found that bubbly flows with deformable bubbles
have much-weakened enstrophy production and destruction when compared with flows
with rigid bubbles. As vortex stretching is the sole inviscid mechanism responsible for a
forward energy cascade, this observation suggests that the interscale energy transfer in
flows with deformable bubbles relies on a very different mechanism, which, will require
new turbulence models.
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